\(\int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx\) [145]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 149 \[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

1/4*(A+B)*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/f/(c-c*sin(f*x+e))^(5/2)-a*B*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c/f
/(c-c*sin(f*x+e))^(3/2)-a^2*B*cos(f*x+e)*ln(1-sin(f*x+e))/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3051, 2818, 2816, 2746, 31} \[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {(A+B) \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{c f (c-c \sin (e+f x))^{3/2}} \]

[In]

Int[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

((A + B)*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*f*(c - c*Sin[e + f*x])^(5/2)) - (a*B*Cos[e + f*x]*Sqrt[a
+ a*Sin[e + f*x]])/(c*f*(c - c*Sin[e + f*x])^(3/2)) - (a^2*B*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c^2*f*Sqrt[a
 + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2818

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Dist[b*((2*m - 1)
/(d*(2*n + 1))), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 3051

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] + Dist[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {B \int \frac {(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx}{c} \\ & = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac {(a B) \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{c^2} \\ & = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac {\left (a^2 B \cos (e+f x)\right ) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac {\left (a^2 B \cos (e+f x)\right ) \text {Subst}\left (\int \frac {1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {(A+B) \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 f (c-c \sin (e+f x))^{5/2}}-\frac {a B \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 B \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.00 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.33 \[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {a \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {a (1+\sin (e+f x))} \left (B \cos (2 (e+f x)) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-B \left (2+3 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+\left (A+3 B+4 B \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right )}{c^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(a*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(B*Cos[2*(e + f*x)]*Log[Cos[(e + f*x)/2] -
 Sin[(e + f*x)/2]] - B*(2 + 3*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]) + (A + 3*B + 4*B*Log[Cos[(e + f*x)/2]
- Sin[(e + f*x)/2]])*Sin[e + f*x]))/(c^2*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*Sqrt[c
- c*Sin[e + f*x]])

Maple [A] (verified)

Time = 2.94 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.45

method result size
default \(-\frac {a \sec \left (f x +e \right ) \left (-B \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+2 B \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+2 B \left (\sin ^{2}\left (f x +e \right )\right )-2 B \sin \left (f x +e \right ) \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+4 B \sin \left (f x +e \right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+A \sin \left (f x +e \right )-B \sin \left (f x +e \right )+2 B \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-4 B \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}{c^{2} f \left (\sin \left (f x +e \right )-1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(216\)
parts \(-\frac {A \tan \left (f x +e \right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a}{f \left (\sin \left (f x +e \right )-1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{2}}+\frac {B \sec \left (f x +e \right ) \left (\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-2 \left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+2 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )-4 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \sin \left (f x +e \right )+2 \left (\cos ^{2}\left (f x +e \right )\right )-2 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+4 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )+\sin \left (f x +e \right )-2\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, a}{f \left (\sin \left (f x +e \right )-1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{2}}\) \(250\)

[In]

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-a/c^2/f*sec(f*x+e)*(-B*cos(f*x+e)^2*ln(2/(1+cos(f*x+e)))+2*B*cos(f*x+e)^2*ln(csc(f*x+e)-cot(f*x+e)-1)+2*B*sin
(f*x+e)^2-2*B*sin(f*x+e)*ln(2/(1+cos(f*x+e)))+4*B*sin(f*x+e)*ln(csc(f*x+e)-cot(f*x+e)-1)+A*sin(f*x+e)-B*sin(f*
x+e)+2*B*ln(2/(1+cos(f*x+e)))-4*B*ln(csc(f*x+e)-cot(f*x+e)-1))*(a*(1+sin(f*x+e)))^(1/2)/(sin(f*x+e)-1)/(-c*(si
n(f*x+e)-1))^(1/2)

Fricas [F]

\[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral((B*a*cos(f*x + e)^2 - (A + B)*a*sin(f*x + e) - (A + B)*a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x +
e) + c)/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e)), x)

Sympy [F]

\[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \sin {\left (e + f x \right )}\right )}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**(3/2)*(A + B*sin(e + f*x))/(-c*(sin(e + f*x) - 1))**(5/2), x)

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)/(-c*sin(f*x + e) + c)^(5/2), x)

Giac [A] (verification not implemented)

none

Time = 0.41 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.38 \[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {4 \, \sqrt {2} B a \log \left (-2 \, \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{c^{\frac {5}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\sqrt {2} {\left (A a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 5 \, B a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2 \, {\left (A a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 3 \, B a \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}\right )}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )}^{2} c^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )}}{8 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

1/8*sqrt(2)*sqrt(a)*(4*sqrt(2)*B*a*log(-2*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 2)*sgn(cos(-1/4*pi + 1/2*f*x + 1/
2*e))/(c^(5/2)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + sqrt(2)*(A*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))
 + 5*B*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - 2*(A*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 3*
B*a*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2)/((cos(-1/4*pi + 1/2*f*x + 1
/2*e)^2 - 1)^2*c^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(5/2),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(5/2), x)